High-performance simulation of fracture in idealized 'brick and mortar' composites using adaptive Monte Carlo minimization on the GPU
نویسندگان
چکیده
Simulation of the nonlinear mechanical response of materials with explicit representation of microstructural features is extremely challenging. These models typically involve a very large number of degrees of freedom, and are prone to convergence difficulties when searching for roots to nonlinear equilibrium equations. We focus on an idealized material model that is motivated by the microstructure of synthetic nacre: individual ‘bricks’ (representing ceramic platelets) interact through nonlinear cohesive springs (representing a small volume fraction of polymer that bonds the platelets). The model simulates composite fracture through rupture of the cohesive springs. The problem is cast in terms of energy minimization and is essentially described by ‘nearest neighbor’ interactions. The principal focus of this paper is to illustrate the computational gains achievable by the strategic marriage of robust, global Monte Carlo minimization algorithms to the graphics processing unit architecture, and to describe how they were realized on the Nvidia GPU. Results comparing the computation times for graphics processing unit and central processing unit implementations demonstrate that a new adaptive version of the simulated annealing algorithm yields a speedup of approximately 5 times, whereas the graphics processing unit implementation yields a speed-up of about 16 times over conventional four-core central processing unit implementations. The resulting speed enhancement for adaptive graphics processing unit minimization of a factor of 80 enables a far broader range of simulations than has previously been possible. Simulations involving as many as 300,000 bricks can be performed in hours, as compared to weeks required by central processing unit implementation. Many aspects of this approach are translatable to other physical problems involving energy minimization in systems with large numbers of degrees of freedom.
منابع مشابه
GPU-based simulations of fracture in idealized brick and mortar composites
Stiff ceramic platelets (or bricks) that are aligned and bonded to a second ductile phase with low volume fraction (mortar) are a promising pathway to produce stiff, hightoughness composites. For certain ranges of constituent properties, including those of some synthetic analogs to nacre, one can demonstrate that the deformation is dominated by relative brick motions. This paper describes simul...
متن کاملThe impact of stochastic microstructures on the macroscopic fracture properties of brick and mortar composites
This paper examines the effect of non-uniformmicrostructures on themacroscopic fracture properties of idealized brick and mortar composites, which consist of rigid bricks bonded with elastic–plastic mortar that ruptures at finite strain. A simulation tool that harnesses the parallel processing power of graphics processing units (GPUs) was used to simulate fracture in virtual specimens, whose mi...
متن کاملAn Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method
Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...
متن کاملReliability and Sensitivity Analysis of Structures Using Adaptive Neuro-Fuzzy Systems
In this study, an efficient method based on Monte Carlo simulation, utilized with Adaptive Neuro-Fuzzy Inference System (ANFIS) is introduced for reliability analysis of structures. Monte Carlo Simulation is capable of solving a broad range of reliability problems. However, the amount of computational efforts that may involve is a draw back of such methods. ANFIS is capable of approximating str...
متن کاملUncertainties due to Fuel Heating Value and Burner Efficiency on Performance Functions of Turbofan Engines Using Monte Carlo Simulation
In this paper, the impacts of the uncertainty of fuel heating value as well as the burner efficiency on performance functions of a turbofan engine are studied. The mean value and variance curves for thrust, thrust specific fuel consumption as well as propulsive, thermal and overall efficiencies are drawn and analyzed, considering the aforementioned uncertainties based on various Mach numbers at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJHPCA
دوره 30 شماره
صفحات -
تاریخ انتشار 2016